Adaptive Doubly Trained Evolution Control for the Covariance Matrix Adaptation Evolution Strategy

نویسندگان

  • Zbyněk Pitra
  • Lukáš Bajer
  • Jakub Repický
  • Martin Holeňa
چکیده

An area of increasingly frequent applications of evolutionary optimization to real-world problems is continuous black-box optimization. However, evaluating realworld black-box fitness functions is sometimes very timeconsuming or expensive, which interferes with the need of evolutionary algorithms for many fitness evaluations. Therefore, surrogate regression models replacing the original expensive fitness in some of the evaluated points have been in use since the early 2000s. The Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) represents a surrogate-assisted version of the state-of-the-art algorithm for continuous blackbox optimization CMA-ES. The DTS-CMA-ES saves expensive function evaluations through using a surrogate model. However, the model inaccuracy on some functions can slow-down the algorithm convergence. This paper investigates an extension of DTS-CMA-ES which controls the usage of the model according to the model’s error. Results of testing an adaptive and the original version of DTS-CMA-ES on the set of noiseless benchmarks are reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm

Real-world problems often involve the optimisation of multiple conflicting objectives. These problems, referred to as multi-objective optimisation problems, are especially challenging when more than three objectives are considered simultaneously. This paper proposes an algorithm to address this class of problems. The proposed algorithm is an evolutionary algorithm based on an evolution strategy...

متن کامل

A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems

The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a nonelitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist CovarianceMatrix Adaptation Evolution Strategy (CMA-ES). In the original CMA...

متن کامل

Adaptive Encoding: How to Render Search Coordinate System Invariant

This paper describes a method for rendering search coordinate system independent, Adaptive Encoding. Adaptive Encoding is applicable to any iterative search algorithm and employs incremental changes of the representation of solutions. One attractive way to change the representation in the continuous domain is derived from Covariance Matrix Adaptation (CMA). In this case, adaptive encoding recov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017